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Abstract The present paper aims to provide an overview of the development of
the approaches adopted in defining the consonance thresholds in the recently pro-
posed method for decision support named InterCriteria Analysis (ICA). Discussing
the rationale of this leg of the ICA research, and the motivation behind each of the
subsequent steps, we trace here the gradual progress in defining the thresholds of the
membership and non-membership parts of the intuitionistic fuzzy pairs serving as
estimations of the pairwise consonances. This progress is based on both our deep-
ening understanding of the ICA method, and the constant observations being made
during the application of ICA to a wide range of different real-life problems and
datasets.
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1 Introduction

InterCriteria Analysis (ICA) is a novel mathematical method, based on the paradigms
of intuitionistic fuzzy sets and index matrices, which has been recently developed in
Bulgaria with the aim to support decision making in multiobject multicriteria prob-
lems. In the originally formulated problem that gave rise to the method, a part of
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the criteria in an industrial multicriteria decision making problem exhibit high com-
plexity and cost of the measurement compared to the other criteria. The assignment
is to develop a method for identification of strong enough correlations between the
cost-unfavourable criteria and the cost-favourable ones, in order to justifiably skip
measurements against these cost-unfavourable criteria for at least part of the objects,
and thus make the whole decision making process faster or cheaper. For the sake of
terminological precision, in ICA, the term “correlation” is being replaced to the terms
“positive/negative consonance” or “dissonance,” inspired from the field of cognitive
maps.

As input data, the method requires an m x n table with the measurements or
evaluations of m objects against n criteria. As a result, it returns an n x n table with
intuitionistic fuzzy pairs, defining the degrees of consonance between each pair of
criteria, hence the name “intercriteria.” Alternatively, for easier manipulation, the
developed ICA software returns two n x n tables with the membership and the
non-membership parts of the respective intuitionistic fuzzy pairs.

The algorithm is completely data driven and dependent on the input data from the
measurements, and its present so far works well with complete datasets, without any
missing values. The essence of the method is in the exhaustive pairwise comparison
of the values of the measurements of all objects in the set against pairs of criteria, with
all possible pairs being traversed, while counters being maintained for the percentage
of the cases when the relations between the pairs of evaluations have been ‘greater
than,” ‘less than’ or ‘equal.’

The method has been proposed and described in details in 2014 [1], and extensively
researched in the next two years in theoretical aspect (e.g. [2—6]), with a software
application being developed (see [7, 8]). The ICA method has been extensively
researched not only in the light of the originally formulated industrial problem (see
[9, 10]), but also for its applicability to various multicriteria multiobjects problems
(e.g. [11-14]) and with the aim of improving the performance of different procedures
for mathematical optimization (e.g. [15-19]). However, ICA is still being a very
new field of research, giving opportunities for discussion, comparison, approbation,
validation and testing with different datasets.

2 Basic Concepts and Method

The ICA method is based on two fundamental concepts: intuitionistic fuzzy sets and
index matrices. Intuitionistic fuzzy sets defined by Atanassov (see [11, 20-22]) rep-
resent an extension of the concept of fuzzy sets, as defined by Zadeh [23], exhibiting
function 4 (x) defining the membership of an element x to the set A, evaluated in the
[0; 1]-interval. The difference between fuzzy sets and intuitionistic fuzzy sets (IFSs)
is in the presence of a second function v4(x) defining the non-membership of the
element x to the set A, where pa(x) [0; 1], v4(x) [0; 1], and moreover (4 (x) + v4(x))
[0 1].
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The second concept on which the proposed method relies is the concept of index
matrix, a matrix which features two index sets. The theory behind the index matrices
is originally described in [24] and elaborated in details in [25]. Here we will start

with the index matrix M with index sets with m rows {C1, ..., C,,} and n columns
{01, ceey On}
O, -+ Op --- 0, --- 0O,
C] ac,.o, **- acl’ok aC],O[ aC],On
Cilac.o, -+ ac,o, -+ ac,o, - 4ac;o,
M = ,
Cjlac;0, =+ ac;0, "+ ac;,0, *** dc;,0,
Cm aCm»Ol T aCvaj to aCm,OI T aCl1170n

where for every p, g (1 <p <m, 1 < q <n), C, is a criterion (in our case, one of
the twelve pillars), O, in an evaluated object (in our case, one of the EU28 member
states), ac,o, 1s the evaluation of the g-th object against the p-th criterion, and it is
defined as a real number or another object that is comparable according to relation
R with all the rest elements of the index matrix M, so that for each i, j, k it holds
the relation R (ack 0., dac, 0_].). The relation R has dual relation R, which is true in the
cases when relation R is false, and vice versa.

For the needs of our method, pairwise comparisons between every two different
criteria are made along all evaluated objects. During the comparison, it is maintained
one counter of the number of times when the relation R holds, and another counter for
the dual relation. Let S,’: ; be the number of cases where the relations R (ack 0., ac, 0/.)
and R (ac, 0, ac, oj) are simultaneously satisfied. Let also S}’ ; be the number of cases

in which the relations R(ack 0> ac, 0_/.) and its dual F(acl 0. Ac,0 ) are simultane-

J

ously satisfied. As the total number of pairwise comparisons between the object is
n(n — 1)/2, it is seen that there hold the inequalities:

nn—1)

OfS,ﬁfZ+S,f’,§ 5

For every k, [, such that 1 < k <[ < m, and for n > 2 two numbers are defined:

122 %
Sk,l Sk,l

) SV i - B
Haa = m — 1y "% =" 0m = 1)

The pair constructed from these two numbers plays the role of the intuitionistic
fuzzy evaluation of the relations that can be established between any two criteria Cy
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and C;. In this way the index matrix M that relates evaluated objects with evaluating
criteria can be transformed to another index matrix M * that gives the relations among
the criteria:

C Cn

C] (MC],CU vCl,Cl) c v (Mclsc)n, vclycm)

M* =

Cn (Mc,,,,cl, Vcl,cm> (Mcm,cm, ch,cm>

The final step of the algorithm is to determine the degrees of correlation between
the criteria, depending on the user’s choice of u and v. We call these correlations
between the criteria: ‘positive consonance,” ‘negative consonance’ or ‘dissonance.’

Let a, B [0; 1] be given, so that o + B < 1. We say that criteria C; and C; are in:

e (a, B)-positive consonance, if uc, ¢, > o and ve, ¢, < B;
e (a, B)-negative consonance, if ¢, ¢, < B and ve, ¢, > o;
e (a, B)-dissonance, otherwise, [1].

Obviously, the larger o and/or the smaller B, the less number of criteria may
be simultaneously connected with the relation of («, B)-positive consonance. For
practical purposes, it carries the most information when either the positive or the
negative consonance is as large as possible, while the cases of dissonance are less to
no informative.

3 Defining the ICA Thresholds: Overview

According to the authors, one of the most important aspects of the method is the
way the thresholds are determined: as this is what gives the measure of precision of
the decision made using ICA. Setting the thresholds can, obviously, be a completely
expert’s decision, but an algorithmic approach is considered to yield more precision,
objectivity and sustainability. This is why a series of papers has explored this issuein a
stepwise manner, based on both our deepening understanding of the ICA method, and
observations made during the application of the method to various real-life datasets.
It is noteworthy that from the very first contemplations of the method, we realized
that although both the values of the intercriteria consonance, and respectively the
thresholds against these being measured, are normed within the [0, 1]-interval, the
thresholds are not universal, and different thresholds may be adequate in different
problem areas of application. In other words, there is no “one size fits all” solution
when defining the ICA thresholds and it is worth specifically exploring how ICA
membership and non-membership thresholds « and 8 can be objectively defined.
Historically, “the immediate first idea” (per [26]) of this leg of research involved
setting predefined values, i.e. numbers from the [0, 1]-interval, relatively high for
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Table 1 Results from application of ICA over a dataset of EU28 member states’ competitiveness
in year 2013-2014, based on the data from [28]

u A1 2 3 4 5 6 7 8 9 10 11 12 v 1 2 3 4 5 6 7 8 9 10 11 12
1 |- 0.735 0.577 0.720 0.807 0.836 0.733 0.749 0.854 0.503 0.804 0.844 1]0.000 0.220 0.386 0.188 0.132 0.077 0.185 0.172 0.090-0.138 0.111

2 0.735-0.479 0.661 0.749 0.677 0.537 0.590 0.786 0.661 0.804 0.799 2 10.220 0.000-0.228 0.172 0.228 0.362 0.317 0.146 0.286 0.135 0.138
3 |0.577 0.479-0.421 0.519 0.558 0.627 0.675 0.550 0.413 0.548 0.556 3 0.386-0.000-0.405 0.344 0.286 0.251 0.394-0.394 0.389
410.720 0.661 0.421 -0.730 0.683 0.590 0.563 0.677 0.497 0.712 0.690 410.188 0.228-0.000 0.143 0.169 0.283 0.307 0.201 0.397 0.175 0.198
5 |0.807 0.749 0.519 0.730-0.735 0.622 0.632 0.775 0.579 0.815 0.847 5 10.132 0.172 '0.405 0.143 0.000 0.153 0.272 0.259 0.135 0.341 0.098 0.079
6 |0.836 0.677 0.558 0.683 0.735 0.749 0.712 0.788 0.466 0.759 0.751 6 10.077 0.228 0.344 0.169 0.153 0.000 0.135 0.169 0.101 -0A143 0.159
7 |0.733 0.537 0.627 0.590 0.622 0.749 0.741 0.685 0.399 0.624 0.624 7 10.185 0.362 0.286 0.283 0.272 0.135 0.000 0.146 0.209-0.267 0.275
8 10.749 0.590 0.675 0.563 0.632 0.712 0.741 -0.712 0.497 0.688 0.680 8 10.172 0.317 0.251 0.307 0.259 0.169 0.146 0.000 0.206 0.415 0.217 0.233
9 |0.854 0.786 0.550 0.677 0.775 0.788 0.685 0.712-0.526 0.810 0.831 9 10.090 0.146 0.394 0.201 0.135 0.101 0.209 0.206 0.000 |0.405 0.119 0.101

10]0.503 0.661 0.413 0.497 0.579 0.466 0.399 0.497 0.526-0.611 0.598 10-0.236-0.397 0.341 -0.415 0.405 0.000 '0.328 0.344

0.804 0.804 0.548 0.712 0.815 0.759 0.624 0.688 0.810 0.611 -0,873 11]0.138 0.135 0.394 0.175 0.098 0.143 0.267 0.217 0.119 0.328 0.000 0.071

-

120844 0799 0556 0.690 0847 0.751 0.624 0680 0.831 0598 0,373. 120411 0.138 (0389 0.198 0.079 0159 0.275 0.233 0.101 0344 0.071 0.000

(a) Membership parts of the IF pairs (b) Non-membership parts of the IF pairs

the membership threshold, like numbers in the interval [0.75, 1], and relatively low
for the non-membership threshold B like numbers in the interval [0, 0.25]. The
research (published in paper [27]) started from the ideal membership threshold of 1
and non-membership threshold of 0, and involved gradual decrease of« and increase
of, checking on each step what new intercriteria pairs “emerge.” Checking the ICA
pairs against both thresholds was consequent, with first checking the emergent ICA
pairs when applying the membership threshold, and then the non-membership one.

In [27], we presented the essence of the idea, applying the method to data from
the Global Competitiveness Report of the World Economic Forum [28], where we
were interested to detect the eventual correlations between the 12 ‘pillars of country
competitiveness,” in order to outline those fewer pillars on which policy makers
should concentrate their efforts. Our motivation to conduct the analysis has been
that it might be expected that improved country’s performance against some pillars
would positively affect the country’s performance in the respective correlating ones.
This is in line with WEF’s address to state policy makers to “identify and strengthen
the transformative forces that will drive future economic growth” of the countries,
as formulated in the Preface of the GCR in the year 2013-2014 [28].

The results from application of the [CA method over the data from this dataset is
given in the two tables below (Table 1a, b), where for each pair of criteria C; — C;
the degree of correlation (consonance) is given by the intuitionistic fuzzy (IF) pair
( Ke,.c;s VE; . ) For every criterion, the degree of correlation C; — C; is (1, 0), because
every criterion perfectly correlates only with itself; also the tables are symmetrical
along the main diagonal, because the degree of correlation of C; — C; equals that of
C,-C,.

In [27], we showed how, given a fixed year (i.e. dataset), we variate the thresholds
o, B, which respectively changes the number of criteria that start correlating, hence,
the positive consonances formed between the pairs of criteria. As an illustration, we
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Table 2 List of positive intercriteria consonances per different pairs of thresholds

Values for («; B) List of positive consonances (PC) No. of PC No. of criteria
(0.85; 0.15) 1-9; 11-12 2 4

1-5; 1-6; 1-9; 1-11; 1-12; 2-11; 5-11; |11 7

5-12; 9-11; 9-12; 11-12
(0.75; 0.25) 1-5; 1-6; 1-9; 1-11; 1-12; 2-9; 2—-11; 17 7

2-12; 5-9; 5-11; 5-12; 6-9; 6-11; 6-12;
9-11;9-12; 11-12

(0.70; 0.30) 1-2; 1-4; 1-5; 1-6; 1-7; 1-8; 1-9; 1-11; |29 10
1-12; 2-5; 2-9; 2-11; 2-12; 4-5; 4-11;
5-6; 5-9; 5-11; 5-12; 6-7; 6-8; 6-9;
6-11; 6-12; 7-8; 8-9; 9—11; 9-12; 11-12

(0.65; 0.35) 1-2; 1-4; 1-5; 1-6; 1-7; 1-8; 1-9; 1-11; |39 12
1-12; 2-4; 2-5; 2—-6; 2-9; 2-10; 2-11;
2-12; 3-8; 4-5; 4-6; 4-9; 4-11; 4-12;
5-6; 5-9; 5-11; 5-12; 6-7; 6-8; 6-9;
6-11; 6-12; 7-8; 7-9; 8-9; 8-11; 8-12;
9-11;9-12; 11-12

give here (Table 2) the results from the check of the dataset of EU28 countries from
the GCR in the year 2013-2014 how stepwise changing the thresholds «, f with
step of 0.05 leads to “emergence” of new intercriteria positive consonances and new
correlating criteria (those highlighted with bold typeface).

In the paper [27], a finer step, with which the thresholds «, 8 are changed, was
taken, namely, 0.025 (decrease for «, increase for ) starting with (0.85, 0.15) and
ending with (0.7, 0.3). The observations of the results lead us to the conclusions that
in the low end, under a certain value for threshold « (respectively, above a certain
value for threshold f), it is natural that all criteria start exhibiting some (rather low)
degree of consonance, which is ineffective for the analysis. In the high end, with too
high threshold «, respectively too threshold B, so few, if any, criteria are in positive
consonance that this is also not effective either. Thus, specifically for the case of the
global competitiveness of the EU28 countries, we concluded to focus the analysis
of intercriteria consonances in the thresholds range from (0.775; 0.225) to (0.825;
0.175), with some more specific discussions about the findings being made.

In [29], already it was noted that this approach may yield some rather different
results for & and B. It was commented that paper [27] adopted the “simplistic case,”
where the values of the thresholds o and g in the different pairs of numbers were
always summing up to 1, like (0.85; 0.15), (0.825; 0.175), (0.8; 0.2), etc. This however
helped us could notice that with this setting applied over the data in the dataset,
threshold B produces disproportionately many intercriteria pairs, far beyond the
number of pairs produced by the respective threshold «. As we summarized in Table 4
in [30], when o = 0.85, the outlined pairs in positive consonance are only 2, and
when 8 = 1 — a = 0.15, the outlined pairs in negative consonance are 19. When
(ax, B) = (0.80; 0.20), these numbers are respectively 11 and 29; and so forth, using
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Table 3. Finding r_na)fimal Column (1) Column (2)
correlations per criterion
c Ci,Cj
1 max 4(C1, ;)
C Cy, Cj
2 max 1(C2, Cj)
C, max ,u(C,,, Cj)
Jrj#n

a step of 0.05, until we reach the intuitionistic fuzzy pair of thresholds (0.65; 0.35),
when these numbers are respectively 39 and 51.

This led to the idea of a finer approach in which one of the thresholds, interchange-
ably, was fixed, and the other one was to be accordingly determined, in order to yield
commensurate (if not identical) results. This required redefinition of the problem of
determining the thresholds: it was no more the question to determine the exact values
of the thresholds « and B, and thus obtain which pairs of criteria exhibit high posi-
tive consonance, but it was the reverse problem: in order to obtain the values of both
thresholds it was necessary to determine a number O < k < n and find which are those
k (out of all n) criteria, which exhibit the highest positive intercriteria consonances.

For this purpose, in [26] a simple algorithm was developed, which for every
separate criterion calculates its positive consonance with each of the rest (n — 1)
criteria, and takes the maximal value; and then sorts these n values in a descending
way, selecting the top k of them. However, it was noted that following such an
algorithm it is quite possible to “draw the line” at a wrong place: the differences
between the «-s and S-s of the first (k + 1) criteria and between the «-s and B-s of
the first k criteria might be negligible, while the differences between the «-s and B-s
of the first (k — 1) criteria and between the «-s and S-s of the first k criteria might be
quite well expressed. Later, this motivated the discussion in [31], aimed to prescind
from a particular number &, but attempt to identify the (unknown in advance) “most
strongly correlating criteria.”

The algorithm, developed in [26] is the following.

(1) For each criterion C;,i =1, ..., n, we find m;;éx M(Ci, Cj), 1.e. the maximum of
Jj#
the discovered correlations of C; with all the rest criteria Cj,j =1, ..., n, i #j.

Thus we obtain for each criterion, which is its top-correlating value.

(2) We create a table like the one shown on Table 3.

(3) We sort the whole Table 3 by Column (2) in descending order, thus ordering the
top-correlating values for all individual criteria.

(4) We shortlist the first k criteria from Column (1) in the resultant sorted table.

(5) The sought value of the threshold « is then the respective value in Column (2)
on k-th place top down, in the resultant sorted table.

The algorithm is shown with the following example, which also illustrates why
“mechanically” determining the number of k criteria, we would like to work with,
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is not obligatory producing optimal results: the gap between the value of «, needed
to shortlist the top 4 correlating criteria (0.854) and «, needed to shortlist the top 5
correlating criteria (0.847) is much smaller compared to the gap between the value «,
needed to shortlist the top 5 and that, needed to shortlist the top 6 correlating criteria
(0.804), or the gap between the value o, needed to shortlist the top 3 and that, needed
to shortlist the top 4 correlating criteria (0.873) (Fig. 1).

After sorting the column by m;;éx /L(C i, C j) in descending order, we obtain the
table from Fig. 2. "

This concluded the algorithm for determining the membership threshold «. In
order to determine the respective value for the non-membership threshold 8, we
repeat the algorithm for B in a mirror-like way: we find ml;l v(Ci, C)), ie. the
minimums of the discovered correlations of C; with all the rejs{ criteria Cj,j =1, ...,
n, i # j, and then sort them in ascending order. Then we take the minimal superset of
criteria ordered by negative consonance, which contains the set of criteria as defined
by the number k in the algorithm for defining threshold o, as graphically shown on
Fig. 3.

In our example, the set of criteria ordered by positive consonance with k = 4 was
the set {11, 12, 1, 9} when a = 0.854, hence the resultant minimal subset from the
set of criteria ordered by positive consonance is {11, 12, 1, 6, 5, 9} when 8 = 0.09.
We can note that in this way the sum of « and § is no more 1. In comparison with
the former version of the method of determining the thresholds by taking predefined
constants summing up to 1, this would mean that if 8 was set to 1 — 0.854 = 0.146,
this would mean effectively that from the non-membership side 10 (rather than 6) out

2 3 4 5 6 7 8 9 10 1112

u 1
1 | 0.735/0.577/0.720 1 0.807 ' 0.836 |0.733 1 0.749 0.854 0.503 0.804 0.844|
i i

2 |0.735 0.4790.661/0.749 0.677 0.537|0.590 0.786 0.661 0.804 0.799|
max £(C;,C))

3 10.5770.479 0.421/0.519 1 0.558 0.627 |0.675 0.550 0.413|0.548 0.556 C,- Jo#
4 10.720 0.661 1 0.421 0.730/0.683 1 0.590  0.563 |0.677 | 0.497 0.712 0.690 1 0.854

2 0.804
5 10.807 0.7490.519 0.730 0.735/0.622 1 0.632 0.775/0.579  0.815 0.847 3 0.675
6 ]0.836 0.677 | 0.558  0.683 0.735 0.749 10.712 0.788 0.466 ' 0.759|0.751 4 0.730

5 0.847
7 10.733 1 0.537 1 0.627 0.590 0.622 0.749 0.741/0.6850.399 1 0.624 0.624

6 0.836
8 10.749 0.590 | 0.675 0.563  0.632|0.712 1 0.741 0.71210.497  0.688 0.680 7 0.749
9 10.8540.786 | 0.550 0.677 0.775/0.788 0.685 0.712 0.526 1 0.810 |0.831 8 0.749

9 0.854
1010.503 1 0.661 0.4130.497 0.579 0.466 | 0.399 0.497 0.526 0.6110.598 10 0.661
11]0.804 1 0.804 0.548 0.712 0.815 0.759 0.624 0.688 0.810 0.611 0.873 11 0.873

12 0.873
12]0.844 1 0.799 0.556  0.690 0.847 0.751 0.624 0.680 0.831 0.598 0.873

Fig. 1 Finding maximal correlations per criterion (Step 2 of the algorithm)



Defining Consonance Thresholds in InterCriteria Analysis ... 169
Number Number Criteria
of of pairs of | ordered b True
max 4(C,,C,) . pars oY | when
C; | = correlating | correlating positive s
1 0.873 criteria criteria consonance -
12 0.873 2 1 11 0.873
1 0.854 12
9 0.854 4 2 1 0.854
5 0.847 k=4 9
6 0.836 5 3 5 0.847
2 0.804 6 11 2 0.804
7 0.749 7 13 6 0.788
8 0.749 9 20 7 0.749
4 0.73 8
3 0.675 10 25 4 0.730
10 0.661 11 37 3 0.675
12 39 10 0.661
Fig. 2 Shortlist the first k criteria (Step 4 of the algorithm)
Number Number Criteria T Number Number Criteria T
of of pairs of | ordered by rue of of pairs of | ordered by rue
. . .. when . . . when
correlating | correlating positive - correlating | correlating | negative <
criteria criteria consonance “= criteria criteria consonance A=
2 1 11 0.873 2 1 11 0.071
12 12
4 2 1 0.854 4 2 1 0.077
k=4 9 ‘ 6
5 3 5 0.847 5 3 5 0.079
6 11 2 0.804 G < 9 0.09
7 13 6 0.788 8 13 2 0.135
9 20 7 0.749 7
8 9 17 4 0.143
10 25 4 0.730 10 19 8 0.146
11 37 3 0.675 11 38 3 0.251
12 39 10 0.661 12 45 10 0.286

Fig. 3 Determining the appropriate threshold 8 with respect to threshold o

of the 12 criteria would be interacting within this threshold, which is much bigger

“noise.”

This “noise” resulting from the consecutive processing of the membership and
non-membership thresholds was observed and solved in the next publication [32] with
a solution inspired by the triangular geometric interpretation of intuitionistic fuzzy
sets. The intuitionistic fuzzy triangle (proposed for the first time in [33], also see [11])
is a graphic interpretation of intuitionistic fuzzy sets that has no analogue in ordinary
fuzzy sets. Its vertices (1, 0), (0, 1) and (0, 0) represent respectively the absolute
Truth, the absolute Falsity and the absolute Uncertainty, while the hypotenuse is a
projection of the intuitionistic fuzzy onto the fuzzy.
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Fig. 4 Close-up of e ®
shortlisted intercriteria pairs Y .
in the IF triangle cut-out Q: -
o8 . (9]
£ 009 .'f
e @ o /
&fo .,D“"_r'/)
J5r >0
\
e o
— I 9
0.6 0.7 0.8 0.9 1

Plotting the intercriteria pairs as points onto the intuitionistic fuzzy interpretational
triangle helped for the first time to develop a procedure for short-listing the set of top
consonance pairs of criteria according to both thresholds « and g simultaneously. For
this purpose, for each point its distance from the (1, 0) point is calculated, where (1,
0) in the context of ICA represents the case of perfect positive consonance between
two criteria (including the perfect positive consonance of any criterion with itself).

The formula for the distance dc, ¢, of the intercriteria pair (C;, C;) to the (1; 0)
point is

dCi,Cj = \/(1 - Mciycj)z + véi,Cj

and the pairs are ordered according to their dc, c; sorted in ascending way. Plotting
the intercriteria correlations as points in the intuitionistic fuzzy triangle gives us the
possibility to rank and work with the strongest pairs of criteria, simultaneously han-
dling membership and non-membership at a time, while in the hitherto steps of our
research we have ranked and worked with the individual criteria, ordered accord-
ing to one of the components in the pair, most often the membership component.
In addition, this innovative approach to the theory of ICA led to a new feature in
the software for calculation of intercriteria correlations, enabling their embedded
graphical visualization [8].

To demonstrate the advantage of this approach, we gave in [26] the same data
for the competitiveness of EU28 economies from the World Economic Forum’s
Global Competitiveness Report for the year 2013-2014. For convenience, the ICA
software arranges the output of intercriteria consonances in two tables, one giving the
membership parts (Table 4) and the other giving the non-membership parts (Table 5)
of the intuitionistic fuzzy pairs for each pair of criteria. Then we give the graphic
interpretation (Fig. 4) of the so-produced intuitionistic fuzzy set of points (standing
for the intercriteria pairs, 66 in number for the case of 12 criteria). We provide also
(the beginning of) the table (Table 6) with ordered correlating pairs, with respect to
the distance from the (1, 0) point.

To define the top correlating criteria, as explained in [26], two randomly taken
threshold values (namely, « = 0.796 and B = 0.134) are taken, which yield 9 points
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Table 4 Discovered membership values for the year 2013-2014
M1 2 3 4 5 6 7 8 9 10 11 12

0.74 0.58

0.48 0.66 0.68 0.54 0.59 0.66

0.58 0.48 0.42 0.52 0.56 0.63 0.67 0.55 0.41 0.55 0.56
0.66 0.42  10.73 0.68 0.59 0.56 0.68 0.5 0.71 0.69

0.520.73  0.74 0.62 “o.ssn
0.68 0.56 0.68 0.74  0.75 0.47

0.54 0.63 0.59 0.62 0.74 0.69 0.4 0.62 0.62
0.59 0.67 0.56 0.63 0.5 0.69 0.68
55 0. 0.69 0.53

10(0.5 0.66 0.41 0.5 0.580.47 0.4 0.5 0.53 0.61 0.6
0.62 0.69 0.61

0.62 0.68 0.6 0387

Table 5 Discovered non-membership values for the year 2013-2014

M1 2 3 4 5 6 7 8 9 10 11 12
0.22.0.19 0.13 0.08 0.19 0.17 0.09/0:45/0.14 0.11
0.22

O 01N LNk W~

0.23 0.17 0.23 0.36 0.32 0.15 0.29 0.13 0.14
|0.39 0.48 0.4 0.340.29 0.250.39[0:540.39 0.39|
0.19 0.23 0.140.170.28 0.31 0.2 0.4 0.17 0.2
0.130.17.0.4 0.14 0.150.27 0.26 0.13 0.34 0.10 0.08
0.08 0.23 0.34 0.17 0.15 0.130.17 0.1 .0.14 0.16
0.1910.36 0.29 0.28 0.27 0.13 0.150.21 0.27 0.28

0.170.32 0.25 0.31 0.26 0.17 0.15 0.21 0.22 0.23
0.12 0.10

0.09 0.15 0.2 0.13 0.1 0.21 0.21
-0.29L0.34_- 0.33 0.34

0.14 0.13/0.39 0.17 0.10 0.14 0.27 0.22 0.12 0.33 0.07
120.11 0.14/0.39 0.2 0.08 0.16 0.28 0.23 0.10.0.34 0.07

TS0 0N kW~

in the cut-out, i.e. 9 intercriteria positive consonance pairs, formed among a set of
6 individual criteria. As we will see, there are also other alternative way of forming
the subset of top correlating intercriteria pairs.

In a consequent step of this leg of research, we explored the question of traversing
and ranking elements of an intuitionistic fuzzy set in the intuitionistic fuzzy inter-
pretation triangle per their proximity to the point (1, 0). The procedure proposed in
[34] required that these threshold values «, 8 are known in advance and predefined,
which for various reasons may not always be the case. For this purpose, the proce-
dure requires application of the topological operators Closure and Interior, which
are defined using the following formulas (see [1, 22, 35]) and illustrated on Fig. 5:
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Table 6 Ordering of the correlating pairs, with respect to the distance from (1, 0) of the points that
represent them in the IF interpretational triangle

No. dci,cj Criteria in («, B)-positive consonance Ke;,c; Voo

(1] 0.148 11-12 Business sophistication—Innovation 0.87 0.07

(2] 0.170 5-12 Higher education and 0.85 0.08
training—Innovation

(3] 0.175 1-9 Institutions—Technological readiness 0.85 0.09

(4] 0.179 1-6 Institutions—Goods market efficiency 0.84 0.08

(5] 0.194 1-12 Institutions—Innovation 0.84 0.11

(6] 0.197 9-12 Technological readiness—Innovation 0.83 0.10

(7] 0.206 5-11 Higher education and training—Business | 0.82 0.10
sophistication

(8] 0.225 9-11 Technological readiness—Business 0.81 0.12
sophistication

(9] 0.230 1-5 Institutions—Higher education and training | 0.81 0.13

(0;1)

(0:0) (1:0)

Fig. 5 An IFS, plotted onto the intuitionistic fuzzy triangle, with the indicated places of the topo-
logical operators Closure and Interior

C(A) = y{x.sup ua(y), inf va(y) )lx € E ¢,
yeE yeEE

I(A) = {(x,Inf wa(y),supva(y) )lx € E
yEE yeE

We will note that since, in the context of ICA, we are only working with finite
sets of m objects, of n criteria, and therefore with a resultant finite set of n(n — 1)/2
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Fig. 6 Triangle, trapezium or pentagon are the possible shapes of the zone, enclosed by the topo-
logical operators Closure and Interior, and the hypotenuse of the intuitionistic fuzzy triangle

Fig. 7 The segment from
the intuitionistic fuzzy
triangle, containing the P
pentagonal zone, enclosed
by the topological operators
Closure and Interior
(respectively, points R and P)
and the hypotenuse, gridded
with unit rectangles

F---p-=--F---r---r---rQO-
1
T-~"T-~~T1T-°°7
1 1
1
1
i B it B B S

1
-

Q.

intercriteria pairs, we can safely replace the functions ‘supremum’ and ‘infimum,’
respectively by the functions ‘maximum’ and ‘minimum.’

We will also note that depending on the particular set, it may have the form
of a triangle in the case of a fuzzy set, all of which elements are plotted onto the
hypotenuse (the least challenging case), or a trapezium, or a pentagon (the most
challenging case), see Fig. 6. In our research in [34] and here we discuss the most
general case of a pentagon (Fig. 7).

The procedure for ranking the intercriteria pairs, hence, comprises two phases:
(1) To define the unit lengths of the rectangular grid that will divide the pentagon;
(2) To define the consequence of traversing the so-defined subrectangles of the grid.
For completeness of the present discussion, we will note that the starting point of
the so-constructed grid depends on the specific problem formulation: if the problem
requires us to seek highest possible consonances among the intercriteria pairs, i.e.
those closest to the Truth, represented by point (1, 0), the so-constructed grid is to
start from the point (mapping) of the operator Closure (which for the needs of the
example on Fig. 7 happens to be point R).

A possible way to define the unit lengths a, b of the rectangular grid is given with
the following two formulas:

max pa(y) — min 4 (y) max v (y) — minv(y)
a4 — yeE yeE h— yeE yeE

nn—1) nn—1)

2 2

The lengths PQ and QR are divided by the total number of points in the plotted
set, and this is the finest possible division for the grid.
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Rank 1.1. (mu, nu) P
Rank 1.2. (mu, nu+l) | ____-_
Rank 1.s (mu, nu+s)

Rank 2.1. (mu-1, nu)

Rank 2.2. (mu-1, nu+l)

Rank 2.s. (mu-1, nuts)

Rank 2.s+1. (mu-1, nu+s+1)

Rank 3.1. (mu-2, nu)

Fig. 8 Traversing the grid by the strategy “max p first”

Another approach is to assign to a and b, respectively, the smallest possible posi-
tive, non-null difference in the first coordinates of any two points of the set, and the
smallest possible positive, non-null difference in the second coordinates of any two
points in the set, by the formulas:

a= llljléf}‘(‘ﬂz —ujl), b= I?}égﬂ% —v).

For the sake of completeness, we can also note the most obvious way of defining
the unit lengths of the rectangular grid by dividing PQ and QR into predefined
number(s), not necessarily the same number of sections per side. Then, for two
predefined numbers u, w, the formulas will have the following forms:

max fta(y) — min ua(y) max va(y) — minva(y)
YeE yeE yeE yeE

a = ,b:
u w

Here we make the assumption that all different intercriteria pairs whose mappings
(points) that belong to a single subrectangle of the grid (if more than one) will be
treated equally. This transforms the question to comparing and ranking the subrect-
angles of the grid, i.e., how the grid is being traversed, which essentially reduces
to the question how we treat—and prioritize between—the three intuitionistic fuzzy
components: membership, non-membership and uncertainty. In this relation, in [34]
we proposed three different strategies, or scenarios.

(1) Strategy “max w first.” In response to this strategy, we start with the subrectan-
gle with the maximal membership and minimal non-membership, i.e. the one
containing the set’s closure, and traverse through the grid in vertical direction
(bottom-to-top), in a way that preserves the membership part as high as possi-
ble, while running through the gradually increasing non-membership parts, as
illustrated in Fig. 8. The following pseudocode gives it in a more formal way:
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Rank 1.1.
Rank 1.2.
Rank 1l.s.
Rank 2.1.
Rank 2.2
Rank 2.s.
Rank t.1.
Rank t.2
Rank t.

(mu, nu)
(mu-1, nu)

(mu-s-1, nu)
(mu, nu+1l)
(mu-1, nu+1l)

(mu-s-1, nu+l)

(mu-1, nu+t)
(mu-2, nu+t)

(mu-s-1, nu+t)

Rank 1.
Rank 2.

Rank 3.

Rank r+l.

(mu, nu)
(mu-1, nu),
(mu+1, nu)
(mu-2, nu),
(mu-1, nu+l),
(

(mu-r, nu),
(mu-r+l, nu+l),
(mu-r+2, nu+2),

Fig. 10 Traversing the grid by the diagonal strategy
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(2) Strategy “min v first”. In response to this strategy, we again start with the
subrectangle with the maximal membership and minimal non-membership, but
this time we traverse through the grid in horizontal direction (right-to-left),
in a way that preserves the non-membership part as low as possible, while
running through the gradually decreasing membership parts. The illustration of
this strategy follows by analogy, Fig. 9. The following pseudocode gives it in a
more formal way:

(3) Diagonal strategy. Starting with the subrectangle with the maximal membership
and minimal non-membership, we then take the simultaneously the union of the
subrectangles that are located one up and one left of the previous, and so forth,

as illustrated in Fig. 4 and by the following pseudocode (Fig. 10).

Any of the strategies for defining the rectangular grid can be combined with any

strategy for traversing the grid; other alternatives are also possible.

In the latest development of the study of ICA thresholds determination, other
alternatives were proposed about how to form the subset of top correlating intercri-
teria pairs. In [36], three alternatives were listed as ways to construct that subset,
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Fig. 11 Illustrating the three alternatives for constructing the subset of ICA pairs

depending on user’s preference or external requirement, and a speculation was made
that others are also possible. There three proposed alternatives were graphically rep-
resented as in Fig. 11, and defined as follows:

(1) Select top p or top g% of the n(n — 1)/2 ICA pairs;

(2) Select all ICA pairs whose corresponding points are within a given radius r
from the (1; 0) point;

(3) Selectall ICA pairs whose corresponding points fall within the trapezoid formed
between the abscissa, the hypotenuse and the two lines corresponding to y = «,
x = f for two predefined numbers «, € [0; 1] (i.e., the approach adopted earlier
in [26]).

Most notably, this leg of the research in [36, 37] was dedicated to idea of having
triples of criteria in positive consonance, upgrading the original concept for discovery
of consonances between intercriteria pairs. The formulated work hypothesis was that,
given a record of intercriteria pairs that have exhibited positive consonance over a
longer period of time, triples and n-tuples of more criteria could be detected among
them featuring high enough pairwise consonance, and an algorithm was proposed for
identification and ranking of the intercriteria triples. The particular interpretation of
such triple of intercriteria consonances, as well as the practical usefulness of the new
concept, was discussed to be a matter of further investigation by problem-specific
experts.

4 Conclusion

In the present paper, we aimed to make a detailed and justified overview of the stages
of development of the research of defining the thresholds in intercriteria analysis.
Starting with the definition and the first intuitive steps related to determining the
thresholds, we trace its progress over time based on our deepening understanding
of the ICA method and following the practical applications of ICA over diverse
problems and datasets. We consider this leg of the ICA research to be one of the most
important theoretical aspects, since it is the concluding step of ICA, determining the
measure of precision which ICA-based decisions can be made with.
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Nevertheless, we consider it appropriate other case studies and problems,
approached in future with the ICA approach, all proposed algorithms—from the
present and previous researches—are worth approbating, in order to compare the
results for various fields of application, consult them with experts in the respective
areas, and make a better justification of our choice of method of selecting threshold
values and selecting the top-correlating criteria.
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