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Abstract: This paper investigates the performance of various Electromagnetic Field Opti-
mization (EFO) algorithms. To improve the performance of the EFO algorithm, ten chaotic
maps – Chebyshev, Circle, Gauss, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal
and Tent are incorporated in the EFO. To compare the performance of the constructed EFO
algorithms, a case study of the identification of the model parameters of a cultivation process
model is studied. An experimental data set from E. coli BL21(DE3)pPhyt109 fed-batch
cultivation process is used. Based on the results of 30 runs of each EFO, some statistical and
InterCriteria analyses are performed. As a result, the iterative EFO and tent chaotic map
EFO are outlined as the best-performing EFO algorithms. These algorithms achieve the best
objective value (best and mean value) and have a good distribution of the results.

Keywords: Chaotic maps, Electromagnetic field optimization, InterCriteria analysis, E. coli
BL21(DE3)pPhyt109 fed-batch cultivation.

Introduction
Metaheuristic algorithms, such as the Genetic algorithm, Particle Swarm Intelligence, Artificial
Bee Colony, etc. have been effectively employed for various complex tasks. Among the existing
metaheuristic algorithms, the Electromagnetic field optimization (EFO) [1] is a promising algo-
rithm, inspired by the behaviour of electromagnets with different polarities and takes advantage
of a nature-inspired ratio, known as the golden ratio.

The EFO algorithm has been applied in several areas [19, 30, 34, 38, 41, 48]. Improvements
of the EFO have been published in [2–5, 49]. The results of some of the enhanced EFO in
the literature are based on chaotic maps [17, 21, 24, 39, 40]. In the paper [39], an effective
technique of the EFO algorithm based on a fuzzy entropy criterion was proposed. Additionally,
a novel chaotic strategy was embedded into the EFO. A series of experiments demonstrated
the superior performance of the proposed technique. The author in [17] developed an improved
version of the EFO based on chaotic maps. The obtained results were compared with other well-
known algorithms demonstrating the ability of the improved EFO to efficiently solve different
problems. A diversification step with chaos in the EFO was presented in [24]. The obtained
results were compared with those of recent and improved algorithms in the literature to show the
performance and effectiveness of the proposed algorithm. Two non-parametric statistical tests,
the Wilcoxon rank-sum and the Friedman test, were performed to determine the significance of
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the results. Here, ICrA is applied instead.

The InterCriteria Analysis (ICrA) was developed to gain additional insight into the nature of
the criteria involved in a multicriteria problem, and to discover on this basis existing relations
between the criteria themselves [9]. It is based on the apparatus of the index matrices [7], and
the intuitionistic fuzzy sets [6, 8] and can be applied to decision-making in different areas of
knowledge.

The approach was thoroughly discussed in several papers dedicated to various areas of applica-
tion [20,44] and still finds scientific interest [18,22,45,46]. In this paper, ICrA has been applied
to compare the numerical results from the EFO algorithm combined with 10 different chaotic
maps [20]. The chaotic maps incorporated into the EFO are Chebyshev, Circle, Gauss, Itera-
tive, Logistic, Piecewise, Sine, Singer, Sinusoidal and Tent. The 10 EFO algorithms have been
applied to a model parameter identification problem of a non-linear E. coli fed-batch cultivation
process.

Cultivation processes are characterized by complex non-linear dynamics and modelling them
presents a hard combinatorial optimization problem. E. coli is still the most important host or-
ganism for recombinant protein production [47]. Cultivation of recombinant micro-organisms
e.g. E. coli, in many cases, is the only economical way to produce pharmaceutical biochemicals,
such as interleukins, insulin, interferons, enzymes and growth factors. Simple bacteria like E.
coli are employed to produce these substances, making it easier to harvest them in large quan-
tities for medical use. E. coli BL21(DE3)pPhyt109 fed-batch cultivation for bacterial phytase
extracellular production [36] has been used as a case study here.

The rest of the paper is organized as follows. In Sections 2, 3 and 4, the InterCriteria Analysis,
Chaos theory, and the EFO background are presented, respectively. In Section 5, the used test
case – a model parameter identification of an E. coliBL21(DE3)pPhyt109 fed-batch cultivation
process – is presented. Section 6 shows numerical results and a discussion. A conclusion and
directions for future work are included in Section 7.

InterCriteria Analysis
InterCriteria analysis, based on the apparatuses of Index Matrices (IM) [10–12] and Intuitionis-
tic Fuzzy Sets (IFS) [6,14], is given in details in [9]. Here, for completeness, the proposed idea
is briefly presented.

Let the initial IM is presented in the form of Eq. (17), where, for every p,q, (1 ≤ p ≤ m,1 ≤
q≤ n), Cp is a criterion, taking part in the evaluation; Oq – an object to be evaluated; Cp(Oq) –
a real number (the value assigned by the p-th criteria to the q-th object).

A =

O1 . . . Oq . . . On

C1 C1(O1) . . . C1(Oq) . . . C1(On)
...

...
. . .

...
. . .

...
Cp Cp(O1) . . . Cp(Oq) . . . Cp(On)
...

...
. . .

...
. . .

...
Cm Cm(O1) . . . Cm(Oq) . . . Cm(On)

(1)

Let O denotes the set of all objects being evaluated, and C(O) is the set of values assigned by a
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given criteria C (i.e., C =Cp for some fixed p) to the objects, i.e.,

O def
= {O1,O2,O3, . . . ,On}, C(O)

def
= {C(O1),C(O2),C(O3), . . . ,C(On)}.

Let xi =C(Oi). Then the following set can be defined:

C∗(O)
def
= {〈xi,x j〉|i 6= j &〈xi,x j〉 ∈C(O)×C(O)}.

Further, if x =C(Oi) and y =C(O j), x≺ y will be written iff i < j.

In order to find the agreement between two criteria, the vectors of all internal comparisons
for each criterion are constructed, which elements fulfill one of the three relations R, R and
R̃. The nature of the relations is chosen such that for a fixed criterion C and any ordered pair
〈x,y〉 ∈C∗(O):

〈x,y〉 ∈ R⇔ 〈y,x〉 ∈ R, (2)

〈x,y〉 ∈ R̃⇔ 〈x,y〉 /∈ (R∪R), (3)

R∪R∪ R̃ =C∗(O). (4)

For example, if “R" is the relation “<", then R is the relation “>", and vice versa.

For the effective calculation of the vector of internal comparisons (denoted further by V (C))
only the subset of C(O)×C(O) needs to be considered, namely:

C≺(O)
def
= {〈x,y〉| x≺ y & 〈x,y〉 ∈C(O)×C(O),

due to Eqs. (2)-(4). For brevity, ci, j = 〈C(Oi),C(O j)〉.

Then for a fixed criterion C the vector of lexicographically ordered pair elements is constructed:

V (C) = {c1,2,c1,3, . . . ,c1,n,c2,3,c2,4, . . . ,c2,n,c3,4, . . . ,c3,n, . . . ,cn−1,n}. (5)

In order to be more suitable for calculations, V (C) is replaced by V̂ (C), where its k-th compo-
nent (1≤ k ≤ n(n−1)

2 ) is given by:

V̂k(C) =


1, iff Vk(C) ∈ R,
−1, iff Vk(C) ∈ R,

0, otherwise.

When comparing two criteria the degree of “agreement” (µC,C′) is usually determined as the
number of matching components of the respective vectors. The degree of “disagreement” (νC,C′)
is usually the number of components of opposing signs in the two vectors. From the way of
computation it is obvious that µC,C′ = µC′,C and νC,C′ = νC′,C. Moreover, 〈µC,C′ ,νC,C′〉 is an
Intuitionistic Fuzzy Pair (IFP).

There may be some pairs 〈µC,C′ ,νC,C′〉, for which the sum µC,C′ + νC,C′ is less than 1. The
difference πC,C′ is considered as a degree of “uncertainty:

πC,C′ = 1−µC,C′−νC,C′ . (6)

Four different algorithms for calculation of µC,C′ and νC,C′ are known [37]:
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• µ-biased ICrA algorithm: This algorithm follows the rules presented in [13, Table 3],
where the rule for =,= for two criteria C and C′ is assigned to µC,C′ .

• ν-biased ICrA algorithm: In this case the rule for =,= for two criteria C and C′ is
assigned to νC,C′ . It should be noted that in such case a criteria compared to itself does
not necessarily yield 〈1,0〉.

• Balanced ICrA algorithm: This algorithm follows the rules in [13, Table 2], where the
rule for =,= for two criteria C and C′ is assigned a half to both µC,C′ and νC,C′ . It should
be noted that in such case a criteria compared to itself does not necessarily yield 〈1,0〉.

• Unbiased ICrA algorithm: This algorithm follows the rules in [13, Table 1]. It should
be noted that in such case a criterion compared to itself does not necessarily yield 〈1,0〉,
too.

In this research µ-biased ICrA algorithm is applied. The pseudo-code of the algorithm is pre-
sented below as Algorithm 1.

Algorithm 1 : µ-biased

Require: Vectors V̂ (C) and V̂ (C′)

1: function DEGREES OF AGREEMENT AND DISAGREEMENT(V̂ (C),V̂ (C′))
2: V ← V̂ (C)−V̂ (C′)
3: µ ← 0
4: ν ← 0
5: for i← 1 to n(n−1)

2 do
6: if Vi = 0 then
7: µ ← µ + 1
8: else if abs(Vi) = 2 then . abs(Vi): the absolute value of Vi
9: ν ← ν + 1

10: end if
11: end for
12: µ ← 2

n(n−1)µ

13: ν ← 2
n(n−1)ν

14: return µ ,ν
15: end function

As a result of applying ICrA to IM A (Eq. (1)), the following IM is constructed:

C2 . . . Cm
C1 〈µC1,C2 ,νC1,C2〉 . . . 〈µC1,Cm ,νC1,Cm〉
...

... . . . ...
Cm−1 . . . 〈µCm−1,Cm ,νCm−1,Cm〉

,

that determines the degrees of “agreement" (µCi,C j) and “disagreement" (νCi,C j) between criteria
C1, ...,Cm [9].

The analysis was carried out using the cross-platform software ICrAData [25]. The obtained
ICrA results are analyzed based on the proposed in [13] consonance and dissonance scale. For
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ease of use the scheme for defining the consonance and dissonance between each pair of criteria
is presented in Table 1.

Table 1. Consonance and dissonance scale [13]

Interval of µC,C′ Meaning

[0.00-0.05] strong negative consonance (SNC)

(0.05-0.15] negative consonance (NC)

(0.15-0.25] weak negative consonance (WNC)

(0.25-0.33] weak dissonance (WD)

(0.33-0.43] dissonance (D)

(0.43-0.57] strong dissonance (SD)

(0.57-0.67] dissonance (D)

(0.67-0.75] weak dissonance (WD)

(0.75-0.85] weak positive consonance (WPC)

(0.85-0.95] positive consonance (PC)

(0.95-1.00] strong positive consonance (SPC)

Chaos theory
Chaos is defined as a phenomenon to study the random and unpredictable deterministic behavior
of the system. Chaos randomness is significantly distinct from statistical randomness in the
context of inherent ability for search space in order to improve optimization. The following
different types of chaotic maps (M1-M10) are used in the paper:

M1. Chebyshev map
According to [42, 43] the Chebyshev map is given by:

wn+1 = cos(t cos−1(wn)). (7)

M2. Circle map
The following expression represents the circle map [29]:

wn+1 = wn +β − (α−2π) mod (1), (8)

where α = 0.5,β = 0.2.
M3. Gauss map
The nonlinear Gauss map (also known as mouse map, [29]) can be expressed as:

wn+1 = exp(−αw2
n)+β , (9)

where α and β are real parameters.

M4. Iterative map
This chaotic map is defined by [32]:

wn+1 = sin
(

απ

wn

)
, (10)
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where α ∈ (0, 1).

M5. Logistic map
A logistic map explains the complex behavior without the randomness appeared from determin-
istic system which is defined as following [31]:

wn+1 = cwn(1−wn), (11)

where w0 ∈ (0, 1), w0 /∈ {0, 0.25, 0.50, 0.75, 1} with c = 4 is called a chaotic sequence.

M6. Piecewise map
The piecewise map [32] is defined as following:

wn+1 =



wn

k
, 0 < wn < k

wn− k
0.5− k

, k ≤ wn < 0.5

1− k−wn

0.5− k
, 0.5≤ wn < 1− k

1−wn

k
, 1− k < wn < 1

(12)

M7. Sine map
The mathematical formulation of sine map [23] is:

wn+1 =
α

4
(sinπwn), (13)

where 0 < α ≤ 4.

M8. Singer map
Singer map can be expressed as [15]:

wn+1 = µ(7.86wn−23.31w2
n + 28.75w3

n−13.302875w4
n), (14)

where µ ∈ (0.9, 1.08).

M9. Sinusoidal map
Mathematically, the sinusoidal map can be expressed as [31]:

wn+1 = αw2
t sin(πwn), (15)

where α = 2.3.

M10. Tent map
Ten map is expressed by the following equation [33]:

wn+1 =


wn

0.07
, wn < 0.7

10(1−wn)

3
, wn ≥ 0.7

(16)

6



INT. J. BIOAUTOMATION, 2024, 28(3), XXX-XXX doi: 10.7546/ijba.2024.28.3.000970

The advantages of chaos theory with non-invertible map scan carry out the overall search space
at a higher speed than stochastic search [26, 27] due to the non-repetition and ergodicity of
chaos [28]. It depends on searching of global optimum on chaotic motion properties such as
ergodicity, regularity and stochastic properties.

Electromagnetic field optimization
EFO is a population-based algorithm and each solution vector is represented by one group of
electromagnets (electromagnetic particle). The number of electromagnets of an electromagnetic
particle is determined by the number of variables of the optimization problem. Therefore, each
electromagnet of the electromagnetic particle corresponds to one variable of the optimization
problem. Moreover, all electromagnets of the same electromagnetic particle have the same
polarity. However, each electromagnet can apply a force of attraction or repulsion on the peer-
electromagnets that correspond to the same variable of the optimization problem.

According to [1] the EFO works as follows:

• First, a population of electromagnetic particles is generated randomly, and the fitness of
each particle is evaluated by a fitness function; then, particles are sorted according to their
fitness.

• Second, sorted particles are divided into three groups, and a portion of the electromag-
netic population is allocated to each group; the first group is called the positive field and
consists of the fittest electromagnetic particles with positive polarity, the second group is
called the the negative field and consists of the electromagnetic particles with the lowest
fitness and negative polarity, and the remaining electromagnetic particles form a group
called the neutral field, which has a small negative polarity almost near zero.

• Finally, in each iteration of the algorithm, a new electromagnetic particle is shaped and
evaluated by a fitness function. If the generated electromagnetic particle is fitter than
the worst electromagnetic particle in the population, then the generated particle will be
inserted into the sorted population according to its fitness and obtain a polarity based on
its position in the population; moreover, the worst particle will be eliminated.

This process continues until it reaches the maximum number of iterations or finds the expected
near-optimal solution.

EFO parameters setting plays a significant role in the performance of EFO. The most important
parameter of EFO is Nemp, which determines the number of electromagnetic particles of the
population. A small number of particles inside the population will cause finding local minima
instead of global minima due to the lack of knowledge about the search space. Additionally,
a large population will lead to slow convergence. In [1] is found out that a population smaller
than 50 tends to find local minima, and a population greater than problem dimension increases
the computational time.

The parameters Pf ield and N f ield parameters determine the percentage of the allocated popula-
tion to the each of the three groups with different polarities. Other important parameters of EFO
are Psrate (the probability of selecting electromagnets of the generated electromagnetic particle
from electromagnets of the positive field without changing them) and Rrate (the possibility of
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Table 2. Range of the main EFO parameters

Parameters Value

Pf ield 0.05 - 0.1

N f ield 0.4 - 0.5

Psrate 0.1 - 0.4

Rrate 0.1 - 0.4

changing one electromagnet of the generated electromagnetic particle with a randomly gener-
ated electromagnet). In Table 2 the proposed in [1] range of parameters values are presented.

A large value for Pf ield increases the global search and slows down convergence, while a small
value for Pf ield reduces the global search and increases the local search [1]. Here, Eq. (17) is
used for calculation of the N f ield value:

N f ield =
1−Pf ield

2
. (17)

Based on a set of numerical experiments other EFO parameters are set to the following values:

Nemp = 50;
Pf ield = 0.1;
N f ield is calculated based on Eq. (17);
Psrate = 0.2;
Rrate = 0.4; and
Maxgen = 200 (maximum number of iterations).

Series of 30 runs of each EFO algorithm are performed on the test case – cultivation model
parameters identification problem.

Case study
As a case study the model parameter identification problem of a non-linear fed-batch cultivation
process of E. coli BL21(DE3)pPhyt109 is used. The following differential equation system is
considered [16, 36]:

dX
dt

= µX− Fin

V
X , (18)

dS
dt

= −qSX +
Fin

V
(Sin−S), (19)

dP
dt

= qPX− Fin

V
P, (20)

dV
dt

= Fin, (21)
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where

µ = µmax
S

kS + S
, qS =

1
YS/X

µ , qP =
1

YP/X
µ , (22)

and X is the biomass concentration, [g/l]; S is the substrate concentration, [g/l]; P is the product
concentration, [g/l]; Fin is the feeding rate, [l/h]; V is the bioreactor volume, [l]; Sin is the
substrate concentration in the feeding solution, [g/l]; µ , qS and qP are the specific rate functions,
[1/h]; µmax is the maximum specific growth rate, [1/h]; kS is the saturation constant, [g/l]; YS/X
and YP/X are the yield coefficients, [-].

For the model (Eq. (18)-Eq. (22)) the parameters that will be identified are µmax, kS, YS/X and
YP/X .

Let Zmod
def
= [Xmod Smod] (model predictions for biomass and substrate) and Zexp

def
= [Xexp Sexp]

(known experimental data for biomass and substrate). Then putting Z = Zmod−Zexp, we define
the objective function as:

J = ‖Z‖2→min, (23)

where ‖‖ denotes the `2-vector norm.

For the model parameters identification we use experimental data for biomass and glucose con-
centration of an E. coli BL21(DE3)pPhyt109 fed-batch cultivation process. The detailed de-
scription of the process condition and experimental data are presented in [35].

Results and discussion
Numerical results
The proposed mathematical model consists of a set of four ODEs (Eqs.18-21) with three depen-
dent state variables x = [X S P] and four unknown parameters p = [µmax kS YS/X YP/X ].

The ranges of the model parameters are as follows:

0.1≤ µmax ≤ 0.9; 0.001≤ kS ≤ 0.5; 0.5≤ YS/X ≤ 10; 0.5≤ YP/X ≤ 10. (24)

The numerical experiments were performed on Intel R© CoreTMi7-8700 CPU @ 3.20 GHz, 3192
MHz, 32 GB Memory (RAM), with a Windows 10 pro (64 bit) operating system. The consid-
ered competing algorithms were implemented in Matlab R2019a. The mathematical model of
E.coli was created in the Simulink R2019a environment. The solver options were the automatic
variable step size and ode45 (Runge–Kutta).

The model parameters are estimated by 10 different EFO algorithms using different chaotic
maps, as follows: EFO algorithm M1 using Chebyshev chaotic map, EFO M2 – Circle chaotic
map, M3 – Gauss chaotic map, M4 – Iterative chaotic map, M5 – Logistic chaotic map, M6
– Piecewise chaotic map, M7 – Sine chaotic map, M8 – Singer chaotic map, M9 – Sinusoidal
chaotic map and M10 – Tent chaotic map. Due to the stochastic nature of the applied algorithms
series of 30 runs for each algorithm are performed. The obtained best estimates of the model
parameters, as well as the corresponding value of objective function J are presented in Table 3.
The best three results are marked in bold.
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Table 3. Optimization results

Algorithm Objective µmax kS YS/X YP/X
chaotic map function value
M1 123.646 0.85 0.016 2.29 1.93
M2 122.805 0.71 0.004 2.27 1.98
M3 121.533 0.85 0.013 2.27 1.95
M4 121.546 0.78 0.008 2.28 1.96
M5 121.744 0.77 0.005 2.29 1.98
M6 122.688 0.87 0.015 2.21 1.89
M7 121.732 0.85 0.009 2.24 1.93
M8 123.155 0.82 0.008 2.32 2.02
M9 121.308 0.85 0.006 2.28 1.97
M10 122.294 0.88 0.016 2.30 1.99

As can be seen the best objective function values are obtained based on EFO algorithm with
Gauss, Iterative and Sinusoidal chaotic maps. The worst results are observed for EFO with
Chebyshev and Singer chaotic maps. The performance of EFO with Logistic and Sine chaotic
maps is identical, as well as the performance of Circle and Piecewise chaotic maps.

A graphical comparisons can be used to establish the presence or absence of systematic de-
viations between the model predictions and the real measurements (experimental data). Such
quantitative measure is also an important evidence for the adequacy of the obtained models.
The model predictions of the state variables X , S and P, based on 10 estimated sets of model
parameters, are compared to the experimental data of E. coli fed-batch process in Figs. 1-3.

The graphical results show that the all models fit well the experimental data. Only model M2
(Circle chaotic map) show some different behaviour for the substrate dynamics.

To compare the performance of the 10 considered EFO algorithms statistical analysis of the nu-
merical results are performed. The data from 30 runs of the algorithms, e.g., the observed values
of the objective function J and the estimated values of the model parameters (µmax, kS, YS/X
and YP/X ), are analysed. The summary statistics of the results (mean values, SD, and the median
of the estimated values) are presented as box plot diagrams in Fig. 4 and Fig. 5.

Fig. 1 Experimental data and models predictions for biomass concentration of an E. coli
BL21(DE3)pPhyt109 cultivation model
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Fig. 2 Experimental data and models predictions for substrate concentration of an E. coli
BL21(DE3)pPhyt109 cultivation model

Fig. 3 Experimental data and models predictions for product concentration of an E. coli
BL21(DE3)pPhyt109 cultivation model

Fig. 4 Box plot with the results from the parameter identification – objective function value

The results show that the best J value observed for M3 is an outlier value. The best mean result
for J is achieved by M4. Given the data for J values, the algorithms M1, M2, M3, M8 and M9
do not produce results with a normal distribution. In the case of model parameters value data,
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Fig. 5 Box plot with the results from the parameter identification – model parameters values

only a few EFO algorithms show a normal distribution of the estimates. The considered model
parameter identification problem is very complex. The mathematical model is highly non-linear
and the use of row experimental data makes the problem difficult to solve. This is why all EFO
algorithms exhibit such behaviour – the longer the box, the more dispersed the data and the data
distribution is positive or negative skewed (Fig. 5).

Based on the numerical results (obtained objective function values) the algorithms M9, M4
and M3 find solutions with the higher accuracy. However, the statistical analysis show that the
M3 and M9 do not have good distribution of the estimates. So, the EFO algorithm M4, using
Iterative chaotic map, is the algorithm with the best overall performance.

ICrA results
To perform ICrA ten IMs are constructed. Eeach IM consists 30 columns (30 runs of EFO
algorithms) and 5 rows (results for J and four model parameters):

Input IMi =

1 2 . . . 30
J . . .

µmax . . .
kS . . .

YS/X . . .
YP/X . . .

,

where the obtained estimations for J and model parameters are used; i = 1−10, for M1 to M10.

In the beginning, the ICrA is applied to the 10 IMi. As a result the following IMs are obtained:
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Out put1 IMi =

J µmax kS YS/X YP/X
J 1 〈µJ,µmax ,νJ,µmax〉 . . . . . . 〈µJ,YP/X ,νJ,YP/X 〉

µmax 〈µµmax,J ,νµmax,J〉 1 . . . . . . 〈µµmax,YP/X ,νµmax,YP/X 〉
...

...
...

...
...

...
YP/X 〈µYP/X ,J ,νYP/X ,J〉 〈µYP/X ,µmax ,νYP/X ,µmax〉 . . . . . . 1

,

To evaluate the correlations between the 10 EFO (M1-M10) the ICrA is again performed over
the IMs Out put1IMi. Thus, the considered ICrA criteria C are the 10 EFO algorithms – M1 is
C1, M2 is C2, etc. As a result an IM of the correlations between criteria Ci is obtained.

The resulting degree of “agreement" (µCi,C j) and “disagreement" (νCi,C j) between the criteria
are presented as IMs, as follows:

Out put2 IMµCi ,C j
=

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 1.00 0.36 0.44 0.51 0.78 0.47 0.42 0.58 0.49 0.56

M2 0.36 1.00 0.60 0.71 0.56 0.78 0.82 0.53 0.71 0.60

M3 0.44 0.60 1.00 0.67 0.38 0.51 0.51 0.40 0.42 0.58

M4 0.51 0.71 0.67 1.00 0.56 0.58 0.60 0.69 0.53 0.89

M5 0.78 0.56 0.38 0.56 1.00 0.60 0.60 0.53 0.64 0.51

M6 0.47 0.78 0.51 0.58 0.60 1.00 0.89 0.51 0.82 0.51

M7 0.42 0.82 0.51 0.60 0.60 0.89 1.00 0.53 0.84 0.51

M8 0.58 0.53 0.40 0.69 0.53 0.51 0.53 1.00 0.53 0.76

M9 0.49 0.71 0.42 0.53 0.64 0.82 0.84 0.53 1.00 0.49

M10 0.56 0.60 0.58 0.89 0.51 0.51 0.51 0.76 0.49 1.00

Out put2 IMνCi ,Cj
=

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 0.00 0.58 0.49 0.47 0.13 0.44 0.53 0.38 0.44 0.38

M2 0.58 0.00 0.31 0.24 0.42 0.11 0.11 0.40 0.20 0.31

M3 0.49 0.31 0.00 0.29 0.51 0.38 0.42 0.53 0.49 0.33

M4 0.47 0.24 0.29 0.00 0.38 0.36 0.38 0.29 0.42 0.07

M5 0.13 0.42 0.51 0.38 0.00 0.27 0.36 0.38 0.24 0.38

M6 0.44 0.11 0.38 0.36 0.27 0.00 0.02 0.40 0.07 0.38

M7 0.53 0.11 0.42 0.38 0.36 0.02 0.00 0.42 0.09 0.42

M8 0.38 0.40 0.53 0.29 0.38 0.40 0.42 0.00 0.40 0.18

M9 0.44 0.20 0.49 0.42 0.24 0.07 0.09 0.40 0.00 0.42

M10 0.38 0.31 0.33 0.07 0.38 0.38 0.42 0.18 0.42 0.00

The obtained results are visualized in Fig. 6.
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Fig. 6 Representation of the results in the intuitionistic fuzzy interpretation triangle

The EFO algorithms that show similar performance, based on the ICrA results, are the following
(in descending order of similarity):

group 1 M4-M10, M6-M7;

group 2 M7-M9, M2-M7, M6-M9;

group 3 M1-M5, M2-M6, M8-M10.

It is found that EFO algorithms with Piecewise and Sine chaotic maps have similar perfor-
mance. These algorithms are related with the algorithms using Circle and Sinusoidal chaotic
maps. Only EFO algorithms with Gauss chaotic map show performance that is not related to
the performance of the other 9 EFO algorithms. The higher degree of agreement is found for
the M4-M10. M4 is the best performed EFO algorithm (Iterative chaotic map) and M10 is one
of the algorithms that produces best mean J value.

The conducted analyses, both statistical and ICrA, made it possible to determine the best among
the ten EFO algorithms. M4 and M10 are selected as the algorithms with the best performance.

Conclusion
The performance of the 10 different EFO algorithms is investigated. As a case study E. coli
BL21(DE3)pPhyt109, a non-linear fed-batch cultivation process is used. Different chaotic maps
are incorporated in each EFO. The results obtained using Chebyshev, Circle, Gaussian, Iterative,
Logistic, Partial, Sinusoidal, Singer, Sinusoidal and Tent chaotic maps are compared. Based on
the performed statistical analysis and InterCriteria analysis, EFO with Iterative chaotic map and
EFO with Tent chaotic map are indicated as the best performed EFO algorithms.

As future work directions, the results obtained here can be confirmed (i) based on the appli-
cation of the chaotic EFO algorithms to another case study or (ii) the same chaotic maps be
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incorporated in another metaheuristic algorithm applied to the model parameter identification
of an E. coli BL21(DE3)pPhyt109 non-linear fed-batch cultivation process.
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