Selected publications in Relations and Operations over IFS, Operators over IFS, Norms, Metrics, Orderings over IFS, IF Topological Structures, Intuitionistic Fuzzy Logics, Interval-Valued IFS and Other Extensions, and Related Topics

 

  • Relations and Operations over IFS
  1. Angelova, N., E. Marinov, K. Atanassov, Intuitionistic fuzzy implications and Kolmogorov’s and Lukasiewisz-Tarski’s axioms of logic, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 2, 35-42.
  2. Angelova, N., K. Atanassov, B. Riecan, Intercriteria analysis of the intuitionistic fuzzy implication properties, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 5, 20-23, ISSN: 1310-4926.
  3. Angelova, N., K. Atanassov, Intuitionistic Fuzzy Implications and the Axioms of Intuitionistic Logic9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30. 06-03. 07. 2015, Gijon, Spain, 1578-1584, doi:10.2991/ifsa-eusflat-15.2015.225.
  4. Atanassov, K., E. Szmidt, J. Kacprzyk, On Fodor’s type of intuitionistic fuzzy implication and negation, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 2, 25-34.
  5. Atanassov, K., On a New Intuitionistic Fuzzy Implication9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30. 06-03. 07. 2015, Gijon, Spain, 1592-1597, doi:10.2991/ifsa-eusflat-15.2015.227.
  6. Szmidt, E., J. Kacprzyk, K. Atanassov, Properties of Fodor’s intuitionistic fuzzy implication and negation, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 4, 6-12, ISSN: 1310-4926.
  7. Szmidt, E., J. Kacprzyk, K. Atanassov, Modal forms of Fodor’s type of intuitionistic fuzzy implication, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 5, 1-6, ISSN: 1310-4926.
  8. Angelova, N., Atanassov, K. (2016). Intuitionistic Fuzzy Implications and Klir-Yuan’s Axioms, In: Novel Developments in Uncertainty Representation and Processing. Advances in Intuitionistic Fuzzy Sets and Generalized Nets, Vol. 401. Atanassov, K. T., Castillo, O., Kacprzyk, J., Krawczak, M., Melin, P., Sotirov, S., Sotirova, E., Szmidt, E., De Tré, G., Zadrożny, S. (Eds. ), Advances in Intelligent Systems and Computing, 2016, 97-110. (SJR = 0. 149)
  9. Angelova, N., Atanassov, K. Properties of the intuitionistic fuzzy implications and negations. Notes on Intuitionistic Fuzzy Sets, 22, 3, 2016, 25-33.
  10. Angelova, N., Stoenchev, M. Intuitionistic fuzzy conjunctions and disjunctions from first type. Annual of “Informatics” Section, Union of Scientists in Bulgaria, Vol. 8, 2015-2016, 1-17. ISSN: 1313-6852.
  11. Atanassov, K. On intuitionistic fuzzy implications. Issues in Intuitionistic Fuzzy Sets and Generalized Nets, Vol. 12, 2015/2016, 1-19.
  12. Atanassov, K., Angelova, N., Szmidt, E., Kacprzyk, J. Properties of the intuitionistic fuzzy implication →186. Notes on Intuitionistic Fuzzy Sets, 22, 4, 2016, ISSN:Print ISSN 1310-4926; Online ISSN 2367-8283, 6-12
  13. Atanassov, K., De Tre, G. An intuitionistic fuzzy evaluation of the “subset” relation between two crisp sets. Notes on Intuitionistic Fuzzy Sets, 22, 4, 2016, ISSN:Print ISSN 1310-4926; Online ISSN 2367-8283, 75-79.
  14. Atanassov, K., Szmidt, E., Kacprzyk, J. New Fodor’s type of intuitionistic fuzzy implication and negation. Notes on Intuitionistic Fuzzy Sets, 22, 3, 2016, ISSN:Print ISSN 1310-4926, Online ISSN 2367-8283, 1-8.
  15. Angelova, N., M. Stoenchev, Intuitionistic fuzzy conjunctions and disjunctions from third type. Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, No. 5, 29-41.
  16. Atanassov, K., E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy implication →188. Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, No. 1, 6-13.
  17. Atanassov, K., E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy implication →187. Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, No. 2, 37-43.
  18. Atanassov, K., E. Szmidt, J. Kacprzyk, Multiplicative type of operations over intuitionistic fuzzy pairs. In: Flexible Query Answering Systems (H. Christiansen, H. Jaudoin, P. Chountas, T. Andreasen, H. L. Larsen, Eds.), Lecture Notes in Artificial Intelligence, Vol. 10333, Springer, Cham, 2017, 201-208.
  19. Atanassov, K., E. Szmidt, N. Angelova, Properties of the intuitionistic fuzzy implication →187. Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, No. 3, 3-8.
  20. Atanassov, K., S. Ribagin, L. Doukovska, V. Atanassova, Intuitionistic fuzzy implication →190, Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, 4, 79-83.
  21. Angelova, N., E. Szmidt, J. Kacprzyk, K. Atanassov (2020) Intuitionistic fuzzy implications revisited. Part 2. Notes on Intuitionistic Fuzzy Sets, Vol. 26, No. 1, 28-35; DOI: 10.7546/nifs.2020.26.1.28-35.
  22. Vassilev, P., & Ribagin, S. (2022). The ⊖ operation over intuitionistic fuzzy pairsNotes on Intuitionistic Fuzzy Sets, 28(3), 223-227, DOI: 10.7546/nifs.2022.28.3.223-227.
  23. Angelova, N., Atanassov, K., & Atanassova, V. (2022). Research on intuitionistic fuzzy implications. Part 2Notes on Intuitionistic Fuzzy Sets, 28(2), 172-192, DOI: 10.7546/nifs.2022.28.2.172-192.
  24. Angelova, N., Atanassov, K., & Atanassova, V. (2023). Research on intuitionistic fuzzy implications. Part 3Notes on Intuitionistic Fuzzy Sets, 29(4), 365-370, DOI: 10.7546/nifs.2023.29.4.365-370.
  25. Atanassov, K., & Tsvetkov, R. (2023). New intuitionistic fuzzy operations, operators and topological structuresIranian Journal of Fuzzy Systems, Vol. 20, No 7, (2023), pp. 37–53. DOI: https://doi.org/10.22111/IJFS.2023.7629
  26. Angelova, N., Atanassov, K., & Atanassova, V. (2024). Research on intuitionistic fuzzy implications. Part 4Notes on Intuitionistic Fuzzy Sets, 30(1), 1-8, DOI: 10.7546/nifs.2024.30.1.1-8.

 

  • Operators over IFS
  1. Atanassov, K., A property of the intuitionistic fuzzy modal logic operator Xa,b,c,d,e,f, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 1, 1-5.
  2. Atanassov, K., A new topological operator over intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 3, 90-92.
  3. Atanassov, K., G. Çuvalcioğlu, S. Yılmaz, V. Atanassova. Properties of the intuitionistic fuzzy modal operator ⊗α,β,γ,δ, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 4, 1-5, ISSN: 1310-4926.
  4. Castillo, O., P. Melin, R. Tsvetkov, K. Atanassov, Short Remark on Two Covering Topological Operators Over Intuitionistic Fuzzy Sets, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 2, 1-5.
  5. Marinov, E., K. Atanassov, Integral modifications of the weight-centre operator, defined over intuitionistic fuzzy sets, Comptes Rendus de l’Academie bulgare des Sciences, Tome 68, No. 7, 2015, 825-832. (IF = 0. 284)
  6. Atanassov, K. On Pseudo-fixed Points of the Intuitionistic Fuzzy Quantifiers and Operators. Proceedings of 8th European Symposium on Computational Intelligence and Mathematics ESCIM 2016, Sofia, Bulgaria, Universidad de Cádiz (Dept. Matemáticas), Spain, 2016, 66-76
  7. Atanassov, K. Uniformly expanding intuitionistic fuzzy operator. Notes on Intuitionistic Fuzzy Sets, 22, 1, 2016, ISSN:Print ISSN 1310-4926, Online ISSN 2367-8283, 48-52.
  8. Atanassov, K., Kacprzyk J. On some modal type Intuitionistic fuzzy operators. Studies in Computational Intelligence, 623, Springer Verlag, 2016, 295-304. SJR:0.187
  9. Atanassova, V., New Modified Level Operator Nγ Over Intuitionistic Fuzzy Sets. Proc. of 12th International Conference on Flexible Query Answering Systems (FQAS 2017), London, UK, June 21-22, 2017, (Christiansen, H., H. Jaudoin, P. Chountas, T. Andreasen, H. L. Larsen (Eds.), LNAI 10333, Springer, 2017, ISBN:978-3-319-59691-4, ISSN:0302-9743, DOI:10.1007/978-3-319-59692-1_18, 209-214. SJR =315.
  10. Roeva, O., P. Vassilev, P. Chountas, Application of Topological Operators over Data from InterCriteria Analysis, FQAS 2017, Lecture Notes in Artificial Intelligence, Vol. 10333, 215-225, 2017. DOI: 10.1007/978-3-319-59692-1 19, SJR = 0.315.
  11. Atanassov, K. (2019) Four interval-valued intuitionistic fuzzy modal-level operators. Notes on Intuitionistic Fuzzy Sets, Vol. 25, No. 3, 12-26.
  12. Atanassov, K. (2022). Extended Temporal-level Operator Over Intuitionistic Fuzzy SetsJournal of Multiple-Valued Logic & Soft Computing, Vol. 39, pp. 385–399.
  13. Atanassov, K. (2022) On intuitionistic fuzzy modal topological structures with modal operator of second type. Notes on Intuitionistic Fuzzy Sets, Vol. 28, No. 4, 457-463; DOI: 10.7546/nifs.2022.28.4.457-463.
  14. Atanassov, K. (2022). New Topological Operator over Intuitionistic Fuzzy SetsJournal of Computational and Cognitive Engineering, 1(3), pp. 94–102. DOI: https://doi.org/10.47852/bonviewJCCE2202197
  15. Atanassov, K. (2022) On intuitionistic fuzzy modal topological structures with modal operator of second typeNotes on Intuitionistic Fuzzy Sets, Vol. 28, No. 4, 457-463; DOI: 10.7546/nifs.2022.28.4.457-463.
  16. Atanassov, K. (2023). Intuitionistic Fuzzy Modal Topological Structures Based on Two New Intuitionistic Fuzzy Modal OperatorsJournal of Multiple-Valued Logic & Soft Computing, Vol. 41, No. 3–5, pp. 227–240. [Abstract]
  17. Atanassov, K. (2023). On two new intuitionistic fuzzy topological operators and four new intuitionistic fuzzy feeble modal topological structuresNotes on Intuitionistic Fuzzy Sets, 29(1), 74-83, DOI: 10.7546/nifs.2023.29.1.74-83.
  18. Atanassov, K. (2023). Intuitionistic fuzzy level operators related to the degree of uncertaintyNotes on Intuitionistic Fuzzy Sets, 29(4), 325-334, DOI: 10.7546/nifs.2023.29.4.325-334.
  19. Atanassov, K. (2023). Intuitionistic Fuzzy Modal Topological Structures Based on Two New Intuitionistic Fuzzy Modal OperatorsIn: Kahraman, C., Sari, I.U., Oztaysi, B., Cebi, S., Cevik Onar, S., Tolga, A.Ç. (eds) Intelligent and Fuzzy Systems. INFUS 2023. Lecture Notes in Networks and Systems, Vol. 758, pp. 11–21. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-39774-5_2
  20. Atanassov, K., & Tsvetkov, R. (2023). New intuitionistic fuzzy operations, operators and topological structuresIranian Journal of Fuzzy Systems, Vol. 20, No 7, (2023), pp. 37–53. DOI: https://doi.org/10.22111/IJFS.2023.7629

 

  • Norms, Metrics, Orderings over IFS
  1. Vassilev, P., A Note on New Distances between Intuitionistic Fuzzy Sets, Notes on Intuitionistic Fuzzy Sets, Vol. 21, 2015, No. 5, 11-15.
  2. Atanassov, K., E. Szmidt, J. Kacprzyk, V. Atanassova, Intuitionistic fuzzy approach to the preference degree estimations, Comptes Rendus de l’Academie bulgare des Sciences, Tome 68, 2015, No. 1, 25-32. (IF = 0. 284)
  3. Marinov, E., P. Vassilev, K. Atanassov, On Intuitionistic Fuzzy Metric Neighbourhoods9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), 30. 06-03. 07. 2015, Gijon, Spain, 1585-1591, doi:10.2991/ifsa-eusflat-15.2015.226.
  4. Marinov, E., P. Vassilev, K. Atanassov. On Separability of Intuitionistic Fuzzy Sets, In: Novel Developments in Uncertainty Representation and Processing, Vol. 401, Advances in Intelligent Systems and Computing, Springer, Cham, 2106, 111-123, (SJR = 0. 149)
  5. Vassilev, P., A note on new partial ordering over intuitionistic fuzzy sets. Annual of “Informatics” Section, Union of Scientists in Bulgaria, Vol. 8, 2015-2016, 18-22. ISSN: 1313-6852.
  6. Vassilev, P., On similarly structured intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, 2, 13-16.
  7. Vassilev, P., L. Todorova, (2019) Miltiplicatively equivalent intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, Vol. 25, No. 2, 25-28.
  8. Atanassov, K., P. Vassilev (2020) A new intuitionistic fuzzy definiteness norm. Notes on Intuitionistic Fuzzy Sets, 26, No. 3, 52-60; DOI: 10.7546/nifs.2020.26.3.52-60.
  9. Vassilev, P., Stoyanov, T., Todorova, L., Marazov., A., Andonov, V., & Ikonomov, N. (2023). Orderings over Intuitionistic Fuzzy Pairs Generated by the Power Mean and the Weighted Power MeanMathematics. Volume 11, Number 13, Article No. 2893. DOI: https://doi.org/10.3390/math11132893 .

 

  • IF Topological Structures
  1. Atanassov, K. (2022). Intuitionistic Fuzzy Modal Topological StructureMathematics, 10, Article No. 3313. DOI: https://doi.org/10.3390/math10183313
  2. Atanassov, K. (2022). On four intuitionistic fuzzy feeble topological structures2022 IEEE 11th International Conference on Intelligent Systems (IS), Warsaw, Poland, 2022, pp. 1-7, doi: 10.1109/IS57118.2022.10019726.
  3. Atanassov, K. (2022) On intuitionistic fuzzy modal topological structures with modal operator of second typeNotes on Intuitionistic Fuzzy Sets, Vol. 28, No. 4, 457-463; DOI: 10.7546/nifs.2022.28.4.457-463.
  4. Atanassov, K. (2023). Intuitionistic Fuzzy Modal Topological Structures Based on Two New Intuitionistic Fuzzy Modal OperatorsJournal of Multiple-Valued Logic & Soft Computing, Vol. 41, No. 3–5, pp. 227–240. [Abstract]
  5. Atanassov, K. (2023). On Intuitionistic Fuzzy Temporal Topological StructuresAxioms, 12, Article No. 182. DOI: https://doi.org/10.3390/axioms12020182
  6. Atanassov, K. (2023). On Intuitionistic Fuzzy Extended Modal Topological Structures. In: Atanassov, K.T., et al. Uncertainty and Imprecision in Decision Making and Decision Support – New Advances, Challenges, and Perspectives. IWIFSGN BOS/SOR 2022 2022. Lecture Notes in Networks and Systems, vol 793, pages 3–14. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-45069-3_1
  7. Atanassov, K. (2023). On two new intuitionistic fuzzy topological operators and four new intuitionistic fuzzy feeble modal topological structuresNotes on Intuitionistic Fuzzy Sets, 29(1), 74-83, DOI: 10.7546/nifs.2023.29.1.74-83.
  8. Atanassov, K. (2023). Intuitionistic fuzzy bimodal topological structuresNotes on Intuitionistic Fuzzy Sets, 29(2), 133-143, DOI: 10.7546/nifs.2023.29.2.133-143.
  9. Atanassov, K. (2023). Four new intuitionistic fuzzy bimodal topological structuresNotes on Intuitionistic Fuzzy Sets, 29(3), 239-246, DOI: 10.7546/nifs.2023.29.3.239-246.
  10. Atanassov, K. (2023). Intuitionistic Fuzzy Modal Topological Structures Based on Two New Intuitionistic Fuzzy Modal OperatorsIn: Kahraman, C., Sari, I.U., Oztaysi, B., Cebi, S., Cevik Onar, S., Tolga, A.Ç. (eds) Intelligent and Fuzzy Systems. INFUS 2023. Lecture Notes in Networks and Systems, Vol. 758, pp. 11–21. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-39774-5_2
  11. Atanassov, K., & Tsvetkov, R. (2023). New intuitionistic fuzzy operations, operators and topological structuresIranian Journal of Fuzzy Systems, Vol. 20, No 7, (2023), pp. 37–53. DOI: https://doi.org/10.22111/IJFS.2023.7629
  12. Atanassov, K. (2024). Intuitionistic Fuzzy Modal Multi-Topological Structures and Intuitionistic Fuzzy Multi-Modal Multi-Topological StructuresMathematics, 12, Article No. 361. DOI: https://doi.org/10.3390/math12030361
  13. Atanassov, K. (2024). Remark on Intuitionistic Fuzzy Temporal Modal Topological StructuresAxioms, 13, Article No. 256. DOI: 10.3390/axioms13040256
  14. Atanassov, K., Angelova, N., & Pencheva, T. (2023). On two intuitionistic fuzzy modal topological structuresAxioms, 12, Article No. 408. DOI: https://doi.org/10.3390/axioms12050408

 

  • Intuitionistic Fuzzy Logics
  1. Atanassov, K., Intuitionistic fuzzy logics as tools for evaluation of Data Mining processes, Knowledge-Based Systems, Vol. 80, 2015, 122-130. (IF = 2. 947)
  2. Atanassov, K. On intuitionistic fuzzy quantifiers. Notes on Intuitionistic Fuzzy Sets, 22, 2, 2016, ISSN:Print ISSN 1310-4926, Online ISSN 2367-8283, 1-12.
  3. Atanassov, K. On Pseudo-fixed Points of the Intuitionistic Fuzzy Quantifiers and Operators. Proceedings of 8th European Symposium on Computational Intelligence and Mathematics ESCIM 2016, Sofia, Bulgaria, Universidad de Cádiz (Dept. Matemáticas), Spain, 2016, 66-76
  4. Atanassov, K. On intuitionistic fuzzy quantifiers. Notes on Intuitionistic Fuzzy Sets, 22, 2, 2016, ISSN:Print ISSN 1310-4926, Online ISSN 2367-8283, 1-12.
  5. Atanassov, K., N. Angelova. On Intuitionistic Fuzzy Negations, Law for Excluded Middle and De Morgan’s LawsIssues in Intuitionistic Fuzzy Sets and Generalized Nets, Vol 12, 2015/2016, 53-60.
  6. Atanassov, K., Georgiev I., Szmidt E., Kacprzyk J. (2016). Multidimensional intuitionistic fuzzy quantifiers. Proc. of IEEE IS’16, IEEE, 530-534.
  7. Atanassov, K., Kacprzyk, J. & Angelova, N. (2024). Intuitionistic Fuzzy Interpretation of Quantum Logic AxiomsJournal of Multiple-Valued Logic & Soft Computing, Vol. 43, No. 4-6, 343-354.

 

  • Interval-valued IFS and other IFS extensions
  1. Atanassov, K., Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets, Algorithms, Vol. 10, 2017, 3, 106; doi:10.3390/a10030106.
  2. Atanassov, K. (2019) Four interval-valued intuitionistic fuzzy modal-level operators. Notes on Intuitionistic Fuzzy Sets, Vol. 25, No. 3, 12-26.
  3. Atanassov, K., P. Marinov, V. Atanassova (2019) InterCriteria Analysis with Interval-Valued Intuitionistic Fuzzy Evaluations. Lecture Notes in Artificial Intelligence, Vol. 11529, Springer Nature, Cham, 329-338. (SJR 0.28).
  4. Atanassov, K. (2022). On the Temporal Intuitionistic Fuzzy Sets. In: Kahraman, C., Tolga, A.C., Cevik Onar, S., Cebi, S., Oztaysi, B., Sari, I.U. (eds) Intelligent and Fuzzy Systems. INFUS 2022. Lecture Notes in Networks and Systems, Vol 504, pp. 519–528. Springer, Cham. https://doi.org/10.1007/978-3-031-09173-5_61

 

  • Related Topics
  1. Atanassov, K. A new geometrical interpretation of the intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets, 22, 5, 2016, ISSN:Print ISSN 1310-4926; Online ISSN 2367-8283, 12-18.
  2. Atanassov, K. Mathematics of intuitionistic fuzzy sets. Studies in Fuzziness and Soft Computing, 341, Springer Verlag, 2016, 61-86. SJR:0.158.
  3. Atanassov, K., V. Andonov, M. Krawczak, On intuitionistic fuzzy modes, medians and mean elements. Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, No. 3, 17-22.
  4. Atanassova, V., Doukovska, Compass-and-straightedge constructions in the intuitionistic fuzzy interpretational triangle: two new intuitionistic fuzzy modal operators. Notes on Intuitionistic Fuzzy Sets, Vol. 23, 2017, No. 2, Print ISSN 1310-4926, Online ISSN 2367-8283, 1-7.
  5. Atanassov, K., Intuitionistic fuzzy interpretations of Barcan formulas. Information Sciences, Volumes 460–461, September 2018, Pages 469-475,  IF = 4.832.
  6. Angelova, N., Čunderlíková, K., Szmidt, E., & Atanassov, K. (2022). Intuitionistic fuzzy interpretations of formula (A → B) → ((¬A → B) → B)Notes on Intuitionistic Fuzzy Sets, 28(4), 428-435, DOI: 10.7546/nifs.2022.28.4.428-435.